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Abstract

With the rapid development of social media services in recent
years, relational data are explosively growing. The signed
network, which consists of a mixture of positive and nega-
tive links, is an effective way to represent the friendly and
hostile relations among nodes, which can represent users
or items. Because the features associated with a node of a
signed network are usually incomplete, noisy, unlabeled, and
high-dimensional, feature selection is an important procedure
to eliminate irrelevant features. However, existing network-
based feature selection methods are linear methods, which
means they can only select features that having the linear
dependency on the output values. Moreover, in many social
data, most nodes are unlabeled; therefore, selecting features
in an unsupervised manner is generally preferred. To this end,
in this paper, we propose a nonlinear unsupervised feature
selection method for signed networks, called SignedLasso.
This method can select a small number of important fea-
tures with nonlinear associations between inputs and output
from a high-dimensional data. More specifically, we formu-
late unsupervised feature selection as a nonlinear feature se-
lection problem with the Hilbert-Schmidt Independence Cri-
terion Lasso (HSIC Lasso), which can find a small number
of features in a nonlinear manner. Then, we propose the use
of a deep learning-based node embedding to represent node
similarity without label information and incorporate the node
embedding into the HSIC Lasso. Through experiments on
two real world datasets, we show that the proposed algorithm
is superior to existing linear unsupervised feature selection
methods.

1 Introduction

With the development of the increasingly prosperous online
world, people are becoming involved in online social net-
works in a variety of ways everyday, which means social me-
dia data is growing explosively (Tang et al. 2016). Therefore,
extracting knowledge from social media data has become an
important and urgent part of data mining in recent years. For
example, Twitter1 generates 6000 twitters per second. High
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dimensional data brings great difficulty to the subsequent
data mining tasks (Duda, Hart, and Stork 2012).

Users typically demonstrate their preferences on social
media by posting comments, following someone on the In-
ternet, and leaving positive/negative ratings, which creates
positive or negative relationships between users and gener-
ates a social network. Moreover, each user has a set of at-
tributes (e.g., age, sex, etc.). This data composes a signed
network in which each node has an attribute vector. To un-
derstand the relationships among users, we must determine
which user attributes (i.e., features) best represent the these
relationships. Moreover, in many social data, most nodes are
unlabeled, which means selecting features in unsupervised
manner is generally preferred. Thus, the development of an
unsupervised feature selection algorithm for signed network
would have a significant impact on the field of data mining.

Feature selection is a widely studied type of machine
learning algorithm and there exist many feature selection
algorithms, including the Least Absolute Shrinkage and Se-
lection Operator (Lasso) (Tibshirani 1996) and minimum re-
dundancy maximum relevance (mRMR) (Peng, Long, and
Ding 2005). These feature selection algorithms employs the
independent and identically distributed (i.i.d) assumption;
therefore, the performances of these methods can be poor
for network data.

To handle feature selection from network data, network-
based feature selection algorithms are useful. One of the
most widely used approach incorporates the network infor-
mation into a regularizer. For example, LinkedFS (Tang and
Liu 2012) extracts various link information and evaluates
the effects of user–user and user–post relationships in the
linked data to find a relevant feature subset. Recently, a novel
framework called SignedFS (Cheng, Li, and Liu 2017) was
proposed to find the most relevant features in signed social
networks by modeling user proximity and link information
of both positive and negative links. However, existing ap-
proaches are all based on linear models.

To this end, in this paper, we propose a nonlinear unsu-
pervised feature selection method for signed networks called
SignedLasso, which can select a small number of important
features with nonlinear association between inputs and out-
put, from a high-dimensional data. More specifically, we for-
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mulate unsupervised feature selection as a nonlinear feature
selection problem with the Hilbert-Schmidt Independence
Criterion Lasso (HSIC Lasso) (Yamada et al. 2014; 2018;
Climente-González et al. 2019), which can find a small num-
ber of features in a nonlinear manner. Then, we propose
the use of a deep learning-based node embedding to rep-
resent the node similarity without label information, and
we incorporate the node embedding into the HSIC Lasso.
Through experiments on two real world datasets, we show
that the proposed algorithm outperforms existing linear un-
supervised feature selection methods.

2 Related Work

In this section, we review feature selection algorithms.

2.1 Feature selection without network
information

Feature selection is an effective approach to handle large-
scale and high-dimensional data and can improve the effi-
ciency of subsequent machine learning tasks, alleviate the
curse of dimensionality, speed up the learning process, and
improve the generalization capability of a model. Tradi-
tional feature selection algorithms can be divided into su-
pervised algorithms (Ding and Peng 2005; Nie et al. 2010;
Tibshirani 1996) and unsupervised algorithms (He, Cai, and
Niyogi 2006; Li et al. 2012). Supervised algorithms include
filter, wrapper, and embedded methods. Specifically, filter
methods score each feature by evaluating its relevance with
class labels, which is independent of the subsequent learn-
ing tasks. Wrapper methods directly take the performance
of the final learning task as the criterion for evaluating the
feature subset, but the cost of computation is much higher
than that of filter methods. Finally, embedded methods ac-
complish feature selection in the training of model.

Recently, nonlinear feature selection algorithms have
demonstrated their specific advantages by capturing the non-
linear dependency between the inputs and output, especially
for high-dimensional data. Minimum redundancy and max-
imum relevance (mRMR) (Peng, Long, and Ding 2005)
is the most widely used nonlinear feature selection algo-
rithm; it can select features that are most related to the
output and are mutually independent of each other. Hibert-
Schmidt feature selection (HSFS) (Masaeli, Dy, and Fung
2010) is a HSIC-based greedy feature selection method that
can select representative features but has very high compu-
tational cost for large and high-dimensional data because of
its non-convexity. Quadratic programming feature selection
(QPFS) (Rodriguez-Lujan et al. 2010) is the relaxed version
of mRMR; it is convex and has a globally optional solu-
tion. Sparse additive models (SpAM) are convex and can be
well optimized by back-fitting algorithms (Liu, Wasserman,
and Lafferty 2009; Raskutti, Wainwright, and Yu 2012). The
HSIC Lasso, which can also be considered as a convex vari-
ant of the mRMR algorithm, is a state-of-the-art nonlinear
supervised feature selection algorithm.

Unsupervised methods have gained more attention re-
cently due to the unavailability of labeled data. Most exist-
ing unsupervised algorithms apply some alternative meth-

ods, such as data similarity, local discriminative informa-
tion, and reconstruction error, for feature selection. There
exist a large number of unsupervised feature selection algo-
rithms. Laplacian Score (LS) (He, Cai, and Niyogi 2006) is a
widely used unsupervised feature selection algorithm, which
is based on Laplacian Eigenmaps (Belkin and Niyogi 2002)
and Locality Preserving Projection (He and Niyogi 2004).
Spectral Feature Selection (SPEC) is a general framework
of spectral feature selection for both supervised and unsuper-
vised learning, which facilitates the joint study of supervised
and unsupervised feature selection. Multi-Cluster Feature
Selection (MCFS) (Cai, Zhang, and He 2010) uses multi-
ple eigenvectors of the graph Laplacian, which is defined on
the affinity matrix of data points, to capture the multi-cluster
structure of the data and then find the important feature sub-
set. Nonnegative Discriminative Feature Selection (NDFS)
(Li et al. 2012) exploits the discriminative information and
feature correlation simultaneously to select a better feature
subset. In contrast, there are a small number of nonlinear un-
supervised feature selection algorithms (Li et al. 2018) be-
cause they present an extremely difficult problem due to vast
number of potential features.

2.2 Feature selection with network information

Traditional feature selection methods assume that the data
are i.i.d. However, the data obtained from a social network
tend to be non i.i.d, because social network data consist of
links between users. Unsupervised Streaming Feature Selec-
tion (USFS) (Li et al. 2015) is a novel unsupervised stream-
ing feature selection framework that exploits link informa-
tion to conduct streaming feature selection. Guided by so-
cial theories (Tang et al. 2016), Linked Unsupervised Fea-
ture Selection (LUFS) (Tang and Liu 2014) is an unsuper-
vised feature selection framework that builds a mathemati-
cal model based on the correlations among instances, and it
uses pseudo-class labels to perform feature selection. Linked
Data Feature Selection (LinkedFS) (Tang and Liu 2012) ex-
tracts various link information and evaluates the effects of
user–user and user–post relationships in the linked data to
find a relevant feature subset. By modeling link information,
Robust Unsupervised Feature Selection for Networked Data
(NetFS) (Li et al. 2016) embeds the latent representation
learning of samples into feature selection for unsigned net-
works. Recent works have shown that negative links are also
informative in many learning tasks. A novel feature selection
framework for signed social networks (SignedFS) (Cheng,
Li, and Liu 2017) was proposed to find most relevant fea-
tures by modeling user proximity and link information of
both positive and negative links. It has been reported that
using network information helps significantly in selecting
important features. However, these algorithms are all linear.
In this paper, we propose a nonlinear feature selection algo-
rithm with network information.

3 Problem Formulation

In this section, we describe the notations used in this paper
and formally define the problem of nonlinear unsupervised
feature selection from a signed network.
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We use bold uppercase characters for matrices (e.g., M ),
bold lowercase characters for vectors (e.g., m), and nor-
mal characters for scalars (e.g., a). mi and mj represent
the i-th row and j-th column of matrix M , respectively,
M ij represents the i, j-th entry of M , and m(i) repre-
sents the i-th element of vector m. We represent the trans-
pose of M as M�, and the Frobenius norm is defined as

‖M‖F =
√∑n

i=1

∑d
j=1 M

2
ij . For a vector m ∈ R

d,

the �1-norm is ‖m‖1 =
∑d

i=1 |m(i)|, amd the �2-norm is

‖m‖2 =

√∑d
i=1 m

(i)2.
Let G = (V, E) be a signed network, where V =

{v1, v2 . . . , vn} is the set of n users and E is the set of pos-
itive and negative links. In particular, the value of any link
eij could be 1, −1, or 0, which indicate a positive, negative,
or no relation between vi and vj , respectively.

Let X ⊂R
d be the domain of vector x. In each node i, we

have an associated feature vector xi. X = (x1, . . .xn)
� =

(f1, . . .fd) ∈ R
n×d is the feature information matrix of n

instances, where f ∈ R
n is a feature vector.

The goal of unsupervised feature selection from a signed
network is to select the m (m � d) most relevant features
of X by exploiting the signed network G = (V, E).

4 Proposed Method

In this section, we introduce a novel unsupervised feature
selection method that utilizes positive and negative link
information and captures nonlinear dependencies between
features and latent representations for a high-dimensional
signed social network.

4.1 Feature Selection by SignedLasso

We consider a feature-wise kernelized nonlinear method
called the Hilbert-Schmidt Independence Criterion Lasso
(HSIC Lasso) (Yamada et al. 2014) and extend it to an
unsupervised scenario for a signed network, which we
call SignedLasso. The HSIC Lasso is a supervised nonlin-
ear feature selection method. Given supervised paired data
{(xi,yi)}ni=1, the optimization problem of HSIC Lasso is
given as

min
β∈Rd

1

2
‖L̄−

d∑
k=1

βkK̄
(k)‖2F + ρ‖β‖1, s.t. β1, . . . , βd ≥ 0,

where L̄ = HLH is the centered Gram matrix, Lij =

L(yi,yj) is the kernel for output, H = In − 1
n1n1

�
n is

the centering matrix, In is the n-dimension identity ma-
trix, 1n is the n-dimension vector whose elements are all
1, K̄(k)

= HK(k)H is the centered Gram matrix for the
k-th feature, K(k)

ij = K(x
(k)
i ,x

(k)
j ) is the kernel for the

k-th dimensional input, β = (β1, β2, . . . βd)
� ∈ R

d is a
vector of regression coefficients, and ρ is the regularization
parameter to control the sparsity. However, for unsupervised
learning with a signed network setup, we cannot directly use
the HSIC Lasso, since we do not have y information under
unsupervised setups.

Thus, we propose an unsupervised variant of the HSIC
Lasso, which utilizes the user latent representation matrix
U = (u1,u2, . . . ,un)

� ∈ R
n×c computed from the signed

network G, where ui ∈ R
c and uj ∈ R

c are the correspond-
ing low-dimensional vector representations of users i and j,
respectively by an embedding method. Supposing we know
the latent representation matrix U , then the objective func-
tion of the SignedLasso is given as

min
β∈Rd

1

2
‖M̄ −

d∑
k=1

βkK̄
(k)‖2F + ρ‖β‖1

s.t. β1, . . . , βd ≥ 0,

(1)

where M̄ = HMH is the centered kernel Gram matrix
and M ij = L(ui,uj).

In this paper, we use the Gaussian kernel for both input
and the user latent representation vector:

K(x
(k)
i ,x

(k)
j ) = exp

(
− (x

(k)
i − x

(k)
j )2

2σ2
x

)
,

L(ui,uj) = exp

(
−‖ui − uj‖22

2σ2
u

)
,

where σx and σu are the Gaussian kernel widths.

SignedLasso interpretation: As similar to the HSIC
Lasso (Yamada et al. 2014), the SignedLasso contains the
main concepts of mRMR (Peng, Long, and Ding 2005)
which is a widely used classical supervised feature selection
algorithm. We can rewrite the first term of Eq. (1) as

1

2
‖M̄ −

d∑
k=1

βkK̄
(k)‖2F

=
1

2

d∑
k,m=1

βkβmHSIC(fk,fm)−
d∑

k=1

βkHSIC(fk,U)

+
1

2
HSIC(U ,U), (2)

where HSIC(fk,U) = tr(K̄(k)
M̄) is the empirical esti-

mate of the Hibert-Schmidt independence criterion (HSIC)
(Gretton et al. 2005), and tr(·) is the trace operator. HSIC
based on a universal reproducing kernel, such as the Gaus-
sian kernel, is a non-negative function that estimates the in-
dependence between two random variables. A larger HSIC
value indicates more dependency between the two variables,
and it is zero if and only if the two random variables are
statistically independent.

In Eq. (2), we ignore the constant HSIC value and con-
sider HSIC(fk,U) and HSIC(fk,fm). If there is strong
dependency between the k-th feature vector fk and user rep-
resentation vector U , the value of HSIC(fk,U) should be
large and the corresponding coefficient βk should also take
a large value in order to minimize Eq. (1). Meanwhile, if
fk is independent of U , the value of HSIC(fk,U) should
be small so that βk tends to be eliminated by �1-regularizer.
This property can help select the most relevant features from
the user latent representation.

4184



For HSIC(fk,fm), if fk and fm are strongly dependent
(i.e., redundant features), the value of HSIC(fk,fm) should
be large and either of the two coefficients βk and βm tends
to be zero to minimize the Eq. (1). This property means that
redundant features will not be selected by SignedLasso.

Reducing the computational complexity of SignedLasso:
The computational complexity of SingedLasso depends on
the dimensions of input data n and d. If n is large, the cost
of computing the input Gram matrix M will be very high.
If d is large, the computation of Gram matrices K(k) (k =
1, 2 . . . , d) is also expensive.

Thus, we employ the block estimator for HSIC (Zhang et
al. 2018). More specifically, we divide the n samples into
n/B blocks, where B is the size of each block. The value
of B is usually set to have a relatively small value i.e., 20 to
50 (B � n), and then the independence measurement HSIC
can be rewritten as

HSICb(fk,u) =
B

n

n/B∑
l=1

HSIC(f (l)
k ,u(l)),

where f
(l)
k ∈ R

B denotes the k-th feature vector
of the l-th partition. The memory required to compute
HSIC(f (l)

k ,u(l)) is O(B2), so the total memory required
for n/B blocks is O(nB). The computation of the origi-
nal HSIC(fk,u) requires O(n2) memory, and O(nB) �
O(n2) because B � n. Similarly, the computation of orig-
inal HSIC(fk,fm) can be reduced by block SignedLasso.
Note that the block SignedLasso is an unsupervised variant
of the block HSIC Lasso (Climente-González et al. 2019).

The (block) SignedLasso is a simple approach based on
the HSIC Lasso. However, its performance heavily depends
on the user latent representation matrix U . In the next sec-
tion, we introduce a deep learning-based embedding ap-
proach for estimating U .

4.2 User Embedding by Deep Learning

In this section, we propose to use a deep learning-based em-
bedding method to obtain the user latent representation ma-
trix U = (u1,u2, . . . ,un)

� ∈ R
n×c.

av

bv

c
v

(a)

av

bv

0
v

(b)

Figure 1: Two types of training triplets in signed network.

We develop a set P of triplets (va, vb, vc), as shown in
Figure 1(a), where user a has a positive link with user b,
while user a has a negative link with user c from signed
network G. Considering the fact that there are many users
whose 2-hop networks have only positive or negative links,

we cannot contain such users in P . Therefore, we add a vir-
tual node v0 to the signed network G and create a negative
link between v0 and each node whose 2-hop network has
only positive links (as shown in Figure 1(b)) and develop a
set P0 of triplets (va, vb, v0), where user a has a positive link
with user b and a negative link with virtual node v0. We do
not consider the nodes whose 2-hop network has only neg-
ative links, there are two main reasons: Firstly, a node tends
to be a spam user (a.k.a., internet trolls) if there exist many
negative links from the node. Secondly, there are few such
nodes because the cost of forming a negative link is much
larger than positive one (Tang, Hu, and Liu 2014). Formally,
P and P0 can be defined as:

P = {(va, vb, vc)|eab = 1, eac = −1, va, vb, vc ∈ V},
P0 = {(va, vb, v0)|eab = 1, ea0 = −1, va, vb, v0 ∈ V}.
Then, we can model the similarity measurement of triplets

in signed network G:

f(ua,ub) ≥ f(ua,uc) + η, (3)
f(ua,ub) ≥ f(ua,u0) + η0, (4)

where ua, ub, uc, u0 ∈ R
c are the low dimensional latent

representation vectors of va, vb, vc, and v0. f(ua,ub) is a
function to evaluate the similarity between va and vb, and
η and ηo are to control the difference between two similar-
ities. For example, the larger the parameter η, the closer va
and vb are, and the farther away va and vc are at the same
time. The Eq. (3) and Eq. (4) are based on the extended bal-
ance theory (Cartwright and Harary 1956), The key idea of
the theory is to assume “friends” are more important than
“foes”, and this is quite an intuitive setup in practice. That
is, a vector should be embedded closer to their “friends” (or
users with positive links) than their “foes” (or users with
negative links). In terms of what is said above, the objective
function (Wang et al. 2017) based on Eq. (3) and Eq. (4) for
user latent representations of signed network is as follows:

min
U ,u0,θ

1

C
[

∑
(ua,ub,uc)∈P

max(f(ua,uc)− f(ua,ub) + η, 0)

+
∑

(ua,ub,u0)∈P0

max(f(ua,u0)− f(ua,ub) + η0, 0)]

+ γ(R(θ) + ‖U‖2F + ‖u0‖22), (5)

where C is the size of training triplets in P and P0, c is
the number of user latent factors, θ is a set of parameters in
similarity measurement function f , R(θ) is a regularizer to
reduce overfitting, and γ is the weight value to control the
regularizer.

Now we discuss how to obtain a good similarity measure-
ment function f . Recently, nonlinear methods have demon-
strated their superiority to linear functions, such as matrix
factorization, for representation learning. Among the non-
linear methods, deep learning is an overwhelmingly power-
ful way to obtain effective nonlinear latent representations.
We use a deep framework called SiNE (Wang et al. 2017) to
obtain user representations. The structure of the deep model
with two networks and N hidden layers is as shown in Fig-
ure 2. The deep model shares the same parameters, where
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Figure 2: Structure of two deep networks sharing same pa-
rameters.

θ = {W 11,W 12,W 2, . . . ,WN , b1, . . . ,W , b} is the pa-
rameters set of the two deep networks. The input of deep
networks is the set of triplets from P and P0. Let oij (j =1
or 2) be the output of the i-th hidden layer. The output of the
first layer are

o11 = tanh(W 11ua +W 12ub + b1),

o12 = tanh(W 11ua +W 12uc + b1),

and the outputs of the deep network are two similarity mea-
surements f(ua,ub) and f(ua, uc) for N hidden layers are

f(ua,ub) = tanh(W�oN1 + b),

f(ua,uc) = tanh(W�oN2 + b).

The objective function of the deep network model is Eq. (5),
where R(θ) can be defined as follows:

R(θ) = ‖W 11‖2F + ‖W 12‖2F + ‖W 2‖2F + . . .+ ‖WN‖2F
+ ‖W ‖22 + ‖b1‖22 + . . .+ ‖bN‖22 + b2.

Then, we employ back propagation to optimize the objective
function of the deep network model (Eq. (5)), update the
parameters, and obtain the user latent representation low-
dimensional matrix U .

Once we obtain the user latent representation matrix, we
select features by the SignedLasso.

5 Experiments

In this section, we report experiments on two real world
signed network datasets that compared the framework pro-
posed in this paper with five state-of-the-art unsupervised
feature selection methods. We first describe the two real-
world signed networks and baselines briefly. Then, we intro-
duce settings of the experiments and present the comparison
results between SignedLasso and the state-of-the-art unsu-
pervised feature selection methods. Finally, we analyze the
run time and memory cost of SignedLasso and two feature
selection algorithms which are designed for network data.
All codes are implemented by Python and we use Intel(R)
Xeon(R) CPU E7- 4870 @ 2.40GHz and 64GB memory.

Table 1: Statistics of Epinions and Wiki-RfA.

Datasets Epinions Wiki-RfA
# of Classes 27 2
# of Users 5016 8044

# of Features 7010 8267
# of Positive links 280838 84425
# of Negative links 41246 25924

(a) Epinions. (b) Wiki-RfA.

Figure 3: Convergence on Epinions & Wiki-RfA.

5.1 Datasets

We use two real world signed network datasets: Epinions
and Wiki-RfA.

Epinions2: Epinions is a product review website on which
users can share their comments on different products. Users
can establish positive or negative links with others. The signs
of links can be 1, −1 or 0, which donate friend, foe, and no
links relationship, respectively. On the website, each user
can write comments or reviews for items, such as products.
We take the words that appear in comments or reviews as
features of users, their frequencies as feature values, and the
category in which a user comments or reviews most as the
ground truth of class labels.

Wiki-RfA3: Wiki-RfA is a signed network dataset con-
cerning the election of editors on Wikipedia. Anyone can be
a candidate for the chief editor or vote for somebody else.
In the network, nodes represent the members and the edges
represent votes. Links are treated the same for this dataset
as they are for the Epinions dataset. Every vote is accom-
panied with a short comment that can be modeled as a user
feature. Similarly, each feature value is the frequency that a
word appears in a short comment. Whether a user is rejected
or accepted is regarded as the ground truth of class labels.

More statistical details of the Epinions and Wiki-RfA data
are given on Table 1.

5.2 Baselines

We compared SignedLasso with five state-of-the-art unsu-
pervised feature selection methods, including traditional al-
gorithms and methods for social networks.

• Laplacian Score (He, Cai, and Niyogi 2006).

2http://www.cse.msu.edu/ tangjili/trust.html
3http://snap.stanford.edu/data/wiki-RfA.html
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(a) ACC on Epinions. (b) NMI on Epinions. (c) F1-Score on Epinions.

(d) ACC on Wiki-RfA. (e) NMI on Wiki-RfA. (f) F1-Score on Wiki-RfA.

Figure 4: The results of experiments for two real signed networks, the horizontal axis denotes the number of selected features,
and the vertical axis denotes the mean value of evaluation metrics: (a) accuracy on Epinions, (b) NMI on Epinions, (c) F1-Score
on Epinion, (d) accuracy on Wiki-RfA, (e) NMI on Wiki-RfA, (f) F1-Score on Wiki-RfA.

• MultiCluster Feature Selection (MCFS) (Cai, Zhang, and
He 2010).

• Nonnegative Discriminative Feature Selection (NDFS)
(Li et al. 2012).

• Robust Unsupervised Feature Selection for Networked
Data (NetFS) (Li et al. 2016).

• Feature Selection Framework in Signed Social Network
(SignedFS).(Cheng, Li, and Liu 2017)

Of the five feature selection technologies described above,
Laplacian Score, MCFS, and NDFS are traditional unsuper-
vised feature selection methods, which only consider data
matrix X without extra information, NetFS is an unsuper-
vised feature selection method that utilizes positive links
among users in an unsigned network. SignedFS is an un-
supervised method that considers both positive and negative
links simultaneously in a signed network. For a fair com-
parison, we use the best cluster performance of all feature
selection methods in different parameters by a grid search
strategy.

For the framework proposed in this paper, we set the block
size as B = 50, the dimension of latent representation vector
as c = 10, the controllers of similarity as η = 1 and η0 = 1,
the number of hidden layers as N = 3, and select the top
10, 15, 20, 25, 30, 35 and 40 features, respectively. The re-
sults of various feature selection methods on Wiki-RfA and
Epinions are shown in Figure 4. By analyzing the results of

different methods, we determined the following results:

• SignedLasso clearly outperforms the traditional feature
selection methods of Laplacian Score, MCFS, and NDFS,
which ignore the link and structure information in most
cases of different numbers of selected features. This
shows that feature selection methods considering link and
structure information are better than traditional methods
based on the i.i.d assumption.

• SignedLasso and SignedFS have better clustering perfor-
mance than NetFS. The most important reason for this
is that NetFS only considers the positive link informa-
tion, while SignedLasso and SignedFS utilize both pos-
itive and negative links between users. This observation
demonstrates that negative links have added value over
positive links for signed networks.

• SignedLasso also outperforms SignedFS, which is a lin-
ear feature selection algorithm for signed networks. This
is because SignedFS is a linear feature selection model
that can only capture linear dependencies between fea-
tures and outputs, while SignedLasso considers a feature-
wise kernelized Lasso to capture nonlinear dependency.

• The proposed method is more stable than other feature
selection methods as its performance is steady as the
number of selected features changes. The performance of
other methods, such as NDFS or MCFS, degrades as the
number of selected features increases because of noise in
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(a) ACC (%) on Epinions. (b) NMI (%) on Epinions. (c) ACC (%) on Wiki-RfA. (d) NMI (%) on Wiki-RfA.

Figure 5: Impact of B and c on SingnedLasso.

the social network data. This means that SignedLasso is
not sensitive to noise and has stronger stabilization.

5.3 Computing and Parameter Analysis

As mentioned before, we use the block SignedLasso to guide
the unsupervised feature selection on a high-dimensional
signed social network. In this subsection, we compare the
run time and memory cost between block SignedLasso
and the other two feature selection algorithms NetFS and
SignedFS. We omit Laplacian Score, MCFS and NDFS from
the analysis because they are not comparable to those meth-
ods for network data.

The main time consumption of SignedLasso is in the pro-
cess of user latent embedding and feature selection. There-
fore, we first investigate the size of epoch to converge for
the objective function of embedding of SignedLasso. Fig-
ure 3 shows the value of objective function in each epoch
for Epinions and Wiki-RfA, respectively. We can see that
the value of the objective function decreases quickly in the
first 200 epochs and then converges. Therefore we set epoch
= 200 to calculate the time consumption of SignedLasso.

We next compare the run time and peak memory usage of
SignedLasso with those of NetFS and SignedFS. We set the
number of training steps for NetFS and SignedFS as 100 and
200, respectively. Tables 2 and 3 shows the run times and
memory peaks of the proposed method and the other two
feature selection methods on Epinions and Wiki-RfA. In Ta-
bles 2 and 3, we can see that SignedLasso has much less run
time than NetFS and SignedFS. The models of SignedFS
and NetFS are based on complex matrix factorization, so
their computations are very expensive and convergence is
so slow when the dimension of data is high. However, the
proposed method, which utilizes blocking, converges an or-
der of magnitude faster than SignedFS and NetFS, but the
required memory is just several times larger that of the other
two methods.

Secondly, we investigate the impacts of parameters block
size B and embedding dimension c which are critical
parts of SignedLasso. More specifically, we set the num-
ber of selected features as 20 and vary the values of B as
{20, 30, 40, 50} and c as {10, 20, 30, 40}, while we keep the
rest of parameter values the same. The results in terms of
ACC and NMI on Epinions and Wiki-RfA under different

Table 2: Run time and Peak memory on Epinions.

Methods NetFS SignedFS SignedLasso
Time(s) 36704 7428 1837

Memory peak(MiB) 2828 3249 6487

Table 3: Run time and Peak memory on Wiki-RfA.

Methods NetFS SignedFS SignedLasso
Time(s) 68256 16860 636

Memory peak(MiB) 4933 8821 11350

combinations of B and c are shown in Figure 5. As can be
seen, SignedLasso is not sensitive to B and c.

6 Conclusion and Future Work

In this paper, we proposed a novel unsupervised nonlinear
feature selection framework called SignedLasso to find the
most relevant and least redundant feature subset for a signed
network. First, combing social theories and the advantage
of deep learning, we embedded the latent representations of
users by modeling two types of training sets consisting of
positive and negative links. Then, we replaced the label in-
formation with the latent representations and applied HSIC
Lasso for effective feature selection by capturing the nonlin-
ear dependencies between features and outputs. It is worthy
mentioning that the number of selected features is much less
than that for traditional methods. Besides, we use a block
policy to reduce the cost of computation so that we can ex-
tend the method to larger scale and higher dimensional data.
We implemented SignedLasso on two real world signed net-
works, and the experimental results show that the proposed
method is promising.

In future work, we can focus on two aspects. First, we
would like to adapt SignedLasso to other signed networks
such as gene networks to capture nonlinear dependency
based on their unique characteristics and then find the most
representative feature subset. Second, we would like to in-
vestigate how to apply the proposed method to more signed
network scenarios to lower data dimension greatly so that
subsequent tasks can be more effective.
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